
Energy Efficient Hardware Design for Crypto Mining
Algorithms

Dingyuan Cao, Vishnu Srinivasan

April 30, 2022

1 Introduction

In the past few years, there has been a large trend emerging in the growth of crypto-
currencies and the mining techniques that go along with them. Large coins such as
Bitcoin, have to be mined and this is generally a tedious and time consuming process.
Unlike mining with a traditional pick-axe, Bitcoin mining refers to performing and
solving complex math puzzles, and if solved, they produce new Bitcoins on the Bitcoin
network. For some context, bitcoin mining is performed by high-powered computers
that solve complex computational math problems; these problems are so complex that
they cannot be solved by hand and are complicated enough to tax even incredibly
powerful computers. Given the fact that these currencies are gaining mass popularity
and are slowly being adapted on scale, it is logical for these mining methods to be
more sustainable and less energy taxing as it will become a hurdle on the long run if it
continues this way.

Conventional methods for mining for bitcoin have astronomically high energy con-
sumption rates. For instance, according to recent surveys, the amount of electricity
consumed by Bitcoin related mining was equal to about 0.55 percent of the world’s
annual electricity production, or the equivalent of a small country like Sweden’s energy
needs. While this accounts for both the usage and mining of bitcoin, it is apparently
clear that mining takes and consumes much more energy than the usage of Bitcoin and
there have been clear needs emerging for finding better approaches in the same.

For some context, the images and info graphics below show how much energy Bitcoin
uses.

2 Background

2.1 Cryptographic Hash Functions

Hash Functions are widely used in computer systems. It takes an arbitrary of input
data, and produce an output based on a set of transformation. Given the input data
and the hash function, the output of the function is always the same. However, for
a given output, there could potentially be multiple inputs corresponding to this same
output. The property gives hash functions the ability to decrease the range of the input
data, extracting (or ”digest”) the information inside input data.

1



2



In a cryptographic setting, the property of hash functions are strengthened. A good
cryptographic hash functions should have following properties:

• Non-reversibility. It is easy to compute the hash value of a given input, but it
should be impossible reconstruct input data from the hash output.

• Diffusion, or avalanche effect. A slight change in the input data, for example
a bit flip, will result in huge change in the output. In other words, the output
should appear to be random generated, and the behavior of the hash function is
unpredictable.

• Determinism. For same input and hash function, the output should always be
the same.

• Collision resistance. Given an input x0 and its output y0, it should be hard to
find a different input x1 ̸= x0 such that H(x1) = y0.

• Non-predictable. The output of the function should not be easily predictable
based on the input.

With these good properties, cryptographic hash functions can be used as message
digest and digital signature. More and more hash functions have been developed, such
as MD5, SHA-256 etc.

2.2 Merkle Tree

Merkle Tree is a tree of hash values. In a Merkle Tree, each leaf node is a hash of an
input data block. To compute the hash value of a given node, all of its children nodes
are evaluated (hashed), then it compute the hash of the concatenation of all its direct
children, and store as its own value. After all the computations, the hash for the root
node is computed, denoted as the hash of the Merkle Tree, also root hash.

When someone wants to check the integrity of the data they received from an un-
trusted source, the root hash can be retrieved from a trusted source. Then, a merkle
tree can be constructed and computed based on the untrusted data. By comparing the
root hash of the constructed merkle tree and the one obtained from trusted authority,
the integrity of the data can be verified. Another good property about merkle tree is
that partial integrity can be checked by computing hash values of internal nodes. when
a hash value of one of the internal nodes is verified, all of its children’s integrity is
verified.

2.3 Bitcoin Mining Algorithm

The algorithim used for Bitcoin mining is SHA-256. This is a member of the SHA-2 set
of functions created by the NSA and SHA stands for Secure Hashing Algorithm. The
Sha-256 algorithm is based on the Merkle-Damgard construction method, according to
which the initial index is divided into blocks immediately after the change is made, and
those, in turn, into 16 words. Additionally, this algorithm has some strong technical
parameters such as a block size indicator of 64, maximum message length of 33, standad
word size of 4, speed of 140 MiB/s, and 64 iterations per cycle. This is the method
used in the Bitcoin mining proof of work algorithm.

3



2.4 Process Variation

Process variation refers to transistor parameter variations caused by manufacturing
process. As the advancement of technology node, it becomes more and more difficult to
manage the process precision, and small shift in parameters can have a huge impact on
the performance of transistors. Two major parameters suffering process variations are
the threshold voltage (Vth) and the effective gate length (Leff ). These parameters are
key to transistor performance, and variation on these parameters will generally make
the processor run slower , because the clock speed is limited by the slowest path in the
pipeline. On the other hand, Vth also affect power consumption, for example, low-Vth

transistors typically consume more energy than high-Vth transistors, though they are
faster than the latter ones.

2.5 Dynamic Voltage And Frequency Scaling

There has always been a relationship between the frequency of a processor and the
voltage supplied here. When the voltage is high, the frequency increases and when the
voltage gets low, the frequency reduces. This translates into a debate of performance
versus power consumption, where the higher the power consumed, the performance
increases and vice versa. However, in most real world systems and applications, there
are constraints that need to be met in order to provide reasonable and tangible use
cases. Due to this, there has been work done in the area and this has led to the
emergence of methods to address this and the most prominent one has been Dynamic
Voltage and Frequency Scaling. Dynamic Voltage and Frequency Scaling (DVFS) is a
method to save energy consumption of electronic devices and to protect them against
overheating by automatic sensing and adaptation of their energy consumption.

3 Motivation

With the inherent heterogeneity caused by process variation, different cores in a CMP
chip will exhibit different performance and power properties. This creates design op-
portunities for scheduling and power management algorithms. On the other hand,
crypto-mining algorithms are really power hungry, which means it would be good to
reduce their power consumption. Combining these two observations, we will test crypto-
mining programs in a process variation setting, to see the power and performance of
such workload.

4 Design

We are going to test cryptocurrency mining algorithm on a process variation aware
system[9].

4.1 High-Level System Design

Two major high-level design issues should be considered here. First is whether all cores
must run at a same frequency, or each of the cores can be assigned with a different

4



frequency. The second is whether the system supports Dynamic Voltage and Frequency
Scaling (DVFS), or it has to be locked at a given frequency. Combining these two design
factors, we get 4 different configurations of system:

• Uniform Frequency + No DVFS: In this configuration, all the system parameters
are set at the very beginning, and the system could not dynamically adjust fre-
quencies in execution. This means that all cores must run on the frequency of the
slowest core, and the only difference between cores is the power consumption. The
scheduler can try to minimize the power consumption under the given frequency.

• Non-Uniform Frequency + No DVFS: In this configuration, all cores run on their
own fastest frequency possible, and each core has different power consumption and
frequency. So a scheduler can try to maximize the performance of such system or
try to minimize energy consumption.

• Uniform Frequency + DVFS: In this configuration, all cores run on a same fre-
quency and can be regulated by DVFS. Given a power budget, the scheduler can
try to optimize performance under this budget.

• Non-Uniform Frequency + DVFS: In this configuration, all cores can run on a
different frequency and DVFS can be applied independently on each of them. This
gives the scheduler the most freedom to schedule cores and save energy. Scheduler
should maximize performance under power budget in this setting (power budget
can be tuned for either energy-saving or performance).

4.2 LinOpt Algorithm

LinOpt Algorithm tries to solve scheduling problem as a linear optimization problem.
The linear optimization problem is formulated as follow: forN independent variables

x1, . . . , xN , maximize objective function:

g = a1x1 + a2x2 + · · ·+ aNxN

x1, . . . , xN are subject to a set of primary constraints x1 ≥ 0, . . . , xN ≥ 0 and any
number of additional constraints:

b1x1 + b2x2+ · · ·+ bNxN ≤ B

...

In this problem, we want to find the best voltage value for each cores such that under
given power budget we can maximize the performance of the system. The throughput
of the system is the average of throughput of each core:

TP =
tp1 + tp2 + · · ·+ tpN

N

5



By definition, tpi = fi × ipci, where fi corresponds to the frequency of core i and
ipci corresponds to instruction-per-cycle of core i. Although frequency can affect ipc,
the variation of ipc is much larger between different threads than that is affected by
frequency, so in this case we assume ipc to be stable through the execution. Frequency is
largely a linear function of voltage. with these assumption, we can rewrite the equation
above:

TP =
a1
N
v1 +

a2
N
v2 + · · ·+ aN

N
vN

where vi corresponds to the voltage of core i. The voltages of the cores are con-
strained by the physical restrictions of cores, and we have:

Vlow ≤ v1, v2, . . . , vN ≤ Vhigh

Because the limitation of the linear problem, we cannot analytically generate the
power p based on the voltage. Instead, we use least square root to fit our linear esti-
mation to the experiment data. for every pi and vi, we have pi = f(vi) ≈ bivi + ci. the
voltage of each core is constrained by the maximum power for each core, also the total
power budget for the chip. Thus we have:

b1v1 + b2v2 + · · ·+ bnvn + c < Ptarget, c =
∑

ci, ∀i ∈ 1..N

bivi + ci < Pcoremax, ∀i ∈ 1..N

With all these constraints, we can use any linear optimization algorithm to solve
this problem.

5 Methodology

We use Gem5 system and processor simulator[3] to model a large CMP chip with 20
out-of-order cores. We use the analytical power model integrated with Gem5. The
configuration of our experiment is summarized below:

Config. Parameters
Overall CMP with 20 out-of-order RISCV-like processor, 4GHz (nominal)
Branch Predictor Tournament branch predictor, 8k globle history buffer, 2k local histroy buffer
Pipeline issue/commit width: 8/8
Cache 32kB L1D/L1I, shared 10MB L2, shared 32MB L3, line size: 64B
Memory DDR3 1600MHz, 8 channel, 8 bank per channel

5.1 Process Variation Model

We use the VARIUS model[8] to simulate process variation within die. First, we use
VARIUS model to generate a spatial map for Vth and Leff variation (Figure 1(a)).

6



Then, we superpose the chip floor plan on top of the variation map (Figure 1(b)).
With this variation map, combining critical path model described in [8], we can derive
frequency and power characteristics of each core. This serves as the profiling process
in real world applications.

Config. Parameter
VDD 0.6-1.0V, nominal voltage is 1.0V
Die size 340mm2

Number of dies 20
Vth µ : 250mV, σ/µ : 0.12, ϕ : 0.5

(a) Variation Map. (b) Variation Map with Floorplan.

Figure 1: Variation Model

5.2 Workloads

We select applications from SPECint (bzip2, crafty, gap, gzip, mcf , parser, twolf ,
and vortex), to evaluate our system under a range of settings. We usea open source
crypto-mining hashing poof of work solver[1] to simulate the mining process. In each
experiment run, 2 to 20 applications are chosen, and the crypto-mining application is
guaranteed to be chosen in each run. Each experiment is repeated 10 times, and the
result is the average outcome of the 10 trails.

6 Evaluation

6.1 Power and Performance Variation

First, we evaluate the process variation effect on the power and frequency of the chips.
We evaluate 400 cores with process variation, and estimate the frequency and power
based on Vth and Leff variation map. The result is shown in figure 2.

7



0.9 1.0 1.1 1.2 1.3
Relative power

0

10

20

30

40

Nu
m

be
r o

f c
or

es

(a) Power Variation.

0.85 0.90 0.95 1.00 1.05
Relative frequency

0

10

20

30

40

Nu
m

be
r o

f c
or

es

(b) Frequency Variation.

Figure 2: Variation Effect on Power and Frequency

From these figures we can see that the power and frequency property vary greatly
across cores. For example, the most power hungry core can consume 48% more energy
than the most power efficient one. This shows great opportunity of variation aware
scheduling algorithm.

6.2 Uniform Frequency with No DVFS

Under this configuration, the scheduler has limited control over hardware. The results
are shown in figure 3. All the numbers are normalized to random mapping.

2 4 8 16 20
Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Re
la

tiv
e 

po
we

r

Random mapping
Variation aware mapping

(a) Power

2 4 8 16 20
Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

1.1

ED
^2

Random mapping
Variation aware mapping

(b) ED2

Figure 3: Power and ED2 in uniform frequency setting.

From the figure, we can see that as the number of threads grows, the performance
gain is decreasing. This is because that when the number of threads is small, the
scheduler have more opportunity to schedule the threads to the most energy efficient
cores, while under high load there’s little space for scheduling. ED2 shows similar
improvement as power under this setting.

8



6.3 Nonuniform Frequency with no DVFS

Compared to the previous setting, cores in this setting can run under different frequen-
cies. This means that faster cores will no longer be constrained by the slower cores. We
use the scheduler to try to minimize power of the system, and the results are shown in
figure 4.

2 4 8 16 20
Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Po
we

r

Random mapping
Variation aware mapping

(a) Power

2 4 8 16 20
Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

1.1

ED
^2

Random mapping
Variation aware mapping

(b) ED2

Figure 4: Power and ED2 in nonuniform frequency setting.

Under this setting, the power saving is similar to the results in 6.2. However, the
ED2 is a little bit worse than that in the uniform frequency setting. This is because
under this configuration, we maybe end up mapping a thread to an energy efficient but
way slower core, thus affect the overall ED2.

6.4 Nonuniform Frequency and DVFS

In this part, we test our system in a DVFS setting. The power budget of the system is
set to 50W, and we want to maximize performance and throughput under this budget.
First, as a naive approach, we can map workloads with higher IPC to higher perfor-
mance cores. This is because for those workloads with lower IPCs, the performance is
more likely to be constrained by memory performance, which is out of the scope of this
project. Then, we apply the linear optimization technique mentioned in 4.2, to further
tune the performance. The results are shown in figure 5.

We can see from the figures, after adapting linear optimization and application IPC
aware mapping, the overall performance (MIPS) increased 11-13%, and ED2 decreased
by more than 20%, compared to the baseline system, which maps workload randomly
and adapt default DVFS setting (not variation aware). Limited by time, we did not
implement the simulated annealing technique to compare with linear optimization al-
gorithm, but the linear optimization algorithm itself shows great advantage against
baseline system.

9



2 4 8 16 20
Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
IP

S

Random+Default
AppIPC+LinOpt

(a) The MIPS of the system.

2 4 8 16 20
Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

ED
^2

Random+Default
AppIPC+LinOpt

(b) ED2

Figure 5: MIPS and ED2 in nonuniform frequency and DVFS setting.

7 Conclusion

In this project, we implemented a process variation aware system, and applied schedul-
ing and mapping algorithms to minimize power or maximize performance under given
power budget. We adopted linear optimization algorithm described in [9], and tested
several workloads on the system, including a crypto-mining benchmarks. The results
showed that there are great potential in scheduling for process variation system, and
linear optimization can greatly improve the energy efficiency of the system.

8 Related Works

This project is mainly based on [9]. We re-implemented the system with similar con-
figurations in Gem5, and tested crypto-mining algorithms in the system. The variation
model is adapted from [8]. Additionally, there has been a lot of work done in the domain
in order to compare the different workloads and energy consumption of crypto mining
algorithms. According to [4], talks about the different power consumption metrics and
utilization numbers in regards to bitcoin and compares it to large scale metrics in the
world. This paper also then compares the different metrics for the top twenty coins
and looks into them individually, basing their metrics on the mining devices and the
hash hit rate. This work provides some important and useful context in regards to the
baselines that generally exist cross coins in the field right now, and how some projects
utilize this to emerge as a low energy alternate. Similarly, in [6], the energy and power
consumption of different coin mining are measured and evaluated in regards to differ-
ent units (energy per coin etc). Additionally, it also looks into more energy efficient
methods to manage power and energy in other crypto currencies, namely Monero and
does a deep dive into this and looks into more efficient mining approaches here. From
a transaction verification point of view, there has been work done in [11] where the
work proposed the development of a Proof OF Work nonce calculation methods where
these methods enable the acceleration of the transaction verification process especially
in solo mining,

Moving away from generalized analysis and methods, the works from [10] looks

10



into a novel method to reduce the energy costs associated with mining. Unlike the
traditional Proof of Work Method, this work proposes a new method known as Proof
Of Contribution which is a modified version of Proof Of Work in order to improve mining
efficiency. This method is equally or similarly secure as Proof Of Work, and based on
experiments conducted this has a better overall result in regards to energy efficiency
and power management metrics. Similar to this, there have been other methods that
have been built upon the existing Proof Of Work consensus, such as the work in [5]
which talks about methods to reduce energy consumption by large amounts in mining
processes by utilizing a system of exclusive computation ”rights” for runner ups in
certain situations, and this is able to reduce the overall mining energy consumption by
about 50 % at its best performing case.

There has also been work in non traditional set ups in order to reduce the energy
consumption of crypto mining algorithms. For instance, [2] talks about the utilization
of a group of quantum servers on which to build a quantum enabled blockchain archi-
tecture. This novel method utilizes a different hardware and system set up to extract
energy savings and is able to achieve a reasonable set of results for the same. This
builds upon the premise of using smarter and more advanced communication networks
to help with the mining process, and this is also noticeable in the methods employed
by [7], where the work talks about using Distributed Generation Resources to monitor
the power management of mining protocols and programs in order to reduce the overall
energy consumption.

References

[1] Equihash proof-of-work solvers. https://github.com/tromp/equihash. Ac-
cessed: 2021-12-12.

[2] Adam J Bennet and Shakib Daryanoosh. Energy-efficient mining on a quantum-
enabled blockchain using light. Ledger, 4, Jul 2019.

[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, aug 2011.

[4] Ulrich Gallersdörfer, Lena Klaaßen, and Christian Stoll. Energy consumption of
cryptocurrencies beyond bitcoin. Joule, 4(9):1843–1846, 2020.

[5] Noureddine Lasla, Lina Alsahan, Mohamed Abdallah, and Mohamed Younis.
Green-pow: An energy-efficient blockchain proof-of-work consensus algorithm.
2020.

[6] Jingming Li, Nianping Li, Jinqing Peng, Haijiao Cui, and Zhibin Wu. Energy con-
sumption of cryptocurrency mining: A study of electricity consumption in mining
cryptocurrencies. Energy, 168:160–168, 2019.

11

https://github.com/tromp/equihash


[7] Mohamed A. Mohamed, Seyedali Mirjalili, Udaya Dampage, Saleh H. Salmen,
Sami Al Obaid, and Andres Annuk. A cost-efficient-based cooperative allocation
of mining devices and renewable resources enhancing blockchain architecture. Sus-
tainability, 13(18), 2021.

[8] Radu Teodorescu, Brian Greskamp, Jun Nakano, Smruti Sarangi, Abhishek Tiwari,
and Josep Torrellas. Varius: A model of parameter variation and resulting timing
errors for microarchitects. 01 2007.

[9] Radu Teodorescu and Josep Torrellas. Variation-aware application scheduling and
power management for chip multiprocessors. In Proceedings of the 35th Annual In-
ternational Symposium on Computer Architecture, ISCA ’08, page 363–374, USA,
2008. IEEE Computer Society.

[10] T. Xue, Y. Yuan, Z. Ahmed, K. Moniz, G. Cao, and C. Wang. Proof of contri-
bution: A modification of proof of work to increase mining efficiency. 1:636–644,
2018. Cited By :21.

[11] Muhammad Muneeb Omair Shafiq Zeeshan Raza, Irfan ul Haq. Energy efficient
multiprocessing solo mining algorithms for public blockchain systems. Scientific
Programming, 2021.

12


	Introduction
	Background
	Cryptographic Hash Functions
	Merkle Tree
	Bitcoin Mining Algorithm
	Process Variation
	Dynamic Voltage And Frequency Scaling

	Motivation
	Design
	High-Level System Design
	LinOpt Algorithm

	Methodology
	Process Variation Model
	Workloads

	Evaluation
	Power and Performance Variation
	Uniform Frequency with No DVFS
	Nonuniform Frequency with no DVFS
	Nonuniform Frequency and DVFS

	Conclusion
	Related Works

